Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Comput Math Methods Med ; 2022: 9604456, 2022.
Article in English | MEDLINE | ID: covidwho-1704361

ABSTRACT

OBJECTIVE: To investigate the potential pharmacological value of extracts from honeysuckle on patients with mild coronavirus disease 2019 (COVID-19) infection. METHODS: The active components and targets of honeysuckle were screened by Traditional Chinese Medicine Database and Analysis Platform (TCMSP). SwissADME and pkCSM databases predict pharmacokinetics of ingredients. The Gene Expression Omnibus (GEO) database collected transcriptome data for mild COVID-19. Data quality control, differentially expressed gene (DEG) identification, enrichment analysis, and correlation analysis were implemented by R toolkit. CIBERSORT evaluated the infiltration of 22 immune cells. RESULTS: The seven active ingredients of honeysuckle had good oral absorption and medicinal properties. Both the active ingredient targets of honeysuckle and differentially expressed genes of mild COVID-19 were significantly enriched in immune signaling pathways. There were five overlapping immunosignature genes, among which RELA and MAP3K7 expressions were statistically significant (P < 0.05). Finally, immune cell infiltration and correlation analysis showed that RELA, MAP3K7, and natural killer (NK) cell are with highly positive correlation and highly negatively correlated with hematopoietic stem cells. CONCLUSION: Our analysis suggested that honeysuckle extract had a safe and effective protective effect against mild COVID-19 by regulating a complex molecular network. The main mechanism was related to the proportion of infiltration between NK cells and hematopoietic stem cells.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/therapeutic use , Lonicera , Network Pharmacology , Phytotherapy , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/immunology , Computational Biology , Databases, Pharmaceutical/statistics & numerical data , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Gene Expression/drug effects , Gene Ontology , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/immunology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lonicera/chemistry , Medicine, Chinese Traditional , Pandemics , SARS-CoV-2/drug effects
2.
Transfus Apher Sci ; 60(5): 103197, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1275746

ABSTRACT

High-dose chemotherapy followed by autologous stem cell transplantation is a major component in the treatment of patients with multiple myeloma. As a prerequisite, the successful collection of a sufficient number of viable peripheral blood hematopoietic CD34+ cells is critical. A common standard protocol for mobilization is currently not defined and critically discussed especially in German-speaking Europe. In times of the Covid-19 pandemic, safe and effective strategies have to be chosen to minimize hospitalization times and severe courses. In this single-center retrospective analysis, safety and efficacy of cyclophosphamide plus etoposide (CE) and growth-factor support (n = 33) was compared to cyclophosphamide mono treatment and growth-factor support (n = 49) in 82 patients with multiple myeloma at first diagnosis. CE was superior to cyclophosphamide mono with a significantly higher number of collected CD34+ cells (15.46 × 106 CD34+ cells/kg vs. 9.92 × 106 CD34+ cells/kg), significantly faster engraftment of granulocytes after stem cell transplantation (day 10.5 vs. day 11.6), shorter duration of the inpatient stay (17.47 days vs. 19.16 days) and significantly less transfusions (8.82 % vs. 30.61 % patients receiving transfusions). The safety profile was comparable in both groups and in line with published data. We conclude that CE is a safe and highly effective mobilization protocol in patients with multiple myeloma at first diagnosis and appears to be superior to the commonly used cyclophosphamide mono regimen.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cyclophosphamide/pharmacology , Etoposide/pharmacology , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells/drug effects , Multiple Myeloma/therapy , Peripheral Blood Stem Cell Transplantation/methods , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , COVID-19 , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Etoposide/administration & dosage , Etoposide/adverse effects , Female , Granulocyte Colony-Stimulating Factor/pharmacology , Humans , Male , Melphalan/administration & dosage , Middle Aged , Multiple Myeloma/blood , Myeloma Proteins/analysis , Pandemics , Retrospective Studies , SARS-CoV-2 , Transplantation, Autologous
3.
Stem Cell Rev Rep ; 17(1): 285-290, 2021 02.
Article in English | MEDLINE | ID: covidwho-1082312

ABSTRACT

The paper presents the results of a standard and complex treatment method using the peptide drug thymus thymalin in patients with COVID-19. One of the mechanisms of the immunomodulatory effect of thymalin is considered to be the ability of this peptide drug to influence the differentiation of human hematopoietic stem cells (HSCs). It was found that, as a result of standard treatment, patients in the control group showed a decrease in the concentration of the pro-inflammatory cytokine IL-6, C-reactive protein, D-dimer. The addition of thymalin to standard therapy accelerated the decline in both these indicators and the indicators of the T cell system. This has helped reduce the risk of blood clots in COVID-19 patients. The revealed properties of the thymus peptide preparation are the rationale for its inclusion in the complex treatment of coronavirus infection. Peptideswith potential biological activity against SARS-CoV-2 virus [29]. Note: Nitrogen atoms are shown in blue, oxygen atoms - in red, carbon atoms - in gray, hydrogen atoms - in white, and phosphorus atoms - in yellow.


Subject(s)
COVID-19 Drug Treatment , Cell Differentiation/drug effects , SARS-CoV-2/drug effects , Thymus Hormones/therapeutic use , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cytokines/genetics , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Humans , SARS-CoV-2/pathogenicity , Thymus Gland/metabolism , Thymus Hormones/genetics , Thymus Hormones/metabolism
4.
Exp Hematol ; 96: 1-12, 2021 04.
Article in English | MEDLINE | ID: covidwho-1077891

ABSTRACT

Interferons are an ancient and well-conserved group of inflammatory cytokines most famous for their role in viral immunity. A decade ago, we discovered that interferons also play an important role in the biology of hematopoietic stem cells (HSCs), which are responsible for lifelong blood production. Though we have learned a great deal about the role of interferons on HSC quiescence, differentiation, and self-renewal, there remains some controversy regarding how interferons impact these stem cells, with differing conclusions depending on experimental models and clinical context. Here, we review the contradictory roles of Type 1 and 2 interferons in hematopoiesis. Specifically, we highlight the roles of interferons in embryonic and adult hematopoiesis, along with short-term and long-term adaptive and maladaptive responses to inflammation. We discuss experimental challenges in the study of these powerful yet short-lived cytokines and strategies to address those challenges. We further review the contribution by interferons to disease states including bone marrow failure and aplastic anemia as well as their therapeutic use to treat myeloproliferative neoplasms and viral infections, including SARS-CoV2. Understanding the opposing effects of interferons on hematopoiesis will elucidate immune responses and bone marrow failure syndromes, and future therapeutic approaches for patients undergoing HSC transplantation or fighting infectious diseases and cancer.


Subject(s)
Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Immunologic Factors/immunology , Interferons/immunology
5.
Bull Exp Biol Med ; 170(1): 118-122, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-959313

ABSTRACT

Thymalin is a polypeptide complex isolated from the thymus and regulating the functions of the immune system. Thymalin is effective in therapy of acute respiratory syndrome, chronic obstructive bronchitis, and other immunopathology. Thymalin increases functional activity of T lymphocytes, but the targeted molecular mechanism of its biological activity requires further study. We studied the influence of thymalin on differentiation of human hematopoietic stem cells (HSC) and expression of CD28 molecule involved in the implementation of antiviral immunity in COVID-19 infection. It was found that thymalin reduced the expression of CD44 (stem cell marker) and CD117 (molecule of the intermediate stage of HSC differentiation) by 2-3 times and increased the expression of CD28 (marker of mature T lymphocytes) by 6.8 times. This indirectly indicates that thymalin stimulated differentiation of CD117+ cells into mature CD28+T lymphocytes. It is known that in patients with severe COVID-19, the number of CD28+, CD4+, CD8+T lymphocytes in the blood decreased, which attested to a pronounced suppression of immunity. It is possible that the antiviral effect of thymalin consists in compensatory stimulation of HSC differentiation into CD28+T lymphocytes at the stage of immunity suppression in unfavorable course of viral infection. Thymalin can be considered as an immunoprotective peptide drug for the prevention of COVID-19.


Subject(s)
Cell Differentiation/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/physiology , Thymus Hormones/pharmacology , CD28 Antigens/genetics , CD28 Antigens/metabolism , COVID-19/immunology , COVID-19/pathology , Cell Differentiation/genetics , Cells, Cultured , Fetal Blood/cytology , Gene Expression Regulation/drug effects , Hematopoietic Stem Cells/pathology , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/physiology , Thymus Hormones/physiology
6.
Signal Transduct Target Ther ; 5(1): 172, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-733534

ABSTRACT

No effective drug treatments are available for coronavirus disease 2019 (COVID-19). Host-directed therapies targeting the underlying aberrant immune responses leading to pulmonary tissue damage, death, or long-term functional disability in survivors require clinical evaluation. We performed a parallel assigned controlled, non-randomized, phase 1 clinical trial to evaluate the safety of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) infusions in the treatment of patients with moderate and severe COVID-19 pulmonary disease. The study enrolled 18 hospitalized patients with COVID-19 (n = 9 for each group). The treatment group received three cycles of intravenous infusion of UC-MSCs (3 × 107 cells per infusion) on days 0, 3, and 6. Both groups received standard COVID-treatment regimens. Adverse events, duration of clinical symptoms, laboratory parameters, length of hospitalization, serial chest computed tomography (CT) images, the PaO2/FiO2 ratio, dynamics of cytokines, and IgG and IgM anti-SARS-CoV-2 antibodies were analyzed. No serious UC-MSCs infusion-associated adverse events were observed. Two patients receiving UC-MSCs developed transient facial flushing and fever, and one patient developed transient hypoxia at 12 h post UC-MSCs transfusion. Mechanical ventilation was required in one patient in the treatment group compared with four in the control group. All patients recovered and were discharged. Our data show that intravenous UC-MSCs infusion in patients with moderate and severe COVID-19 is safe and well tolerated. Phase 2/3 randomized, controlled, double-blinded trials with long-term follow-up are needed to evaluate the therapeutic use of UC-MSCs to reduce deaths and improve long-term treatment outcomes in patients with serious COVID-19.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Cord Blood Stem Cell Transplantation/methods , Coronavirus Infections/therapy , Hematopoietic Stem Cells/virology , Mesenchymal Stem Cell Transplantation/methods , Pneumonia, Viral/therapy , Adult , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Drug Combinations , Female , Glucocorticoids/therapeutic use , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Lopinavir , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiration, Artificial , Ritonavir , SARS-CoV-2 , Severity of Illness Index , Treatment Outcome
7.
Leukemia ; 34(7): 1726-1729, 2020 07.
Article in English | MEDLINE | ID: covidwho-459385

ABSTRACT

The scientific community faces an unexpected and urgent challenge related to the SARS-CoV-2 pandemic and is investigating the role of receptors involved in entry of this virus into cells as well as pathomechanisms leading to a cytokine "storm," which in many cases ends in severe acute respiratory syndrome, fulminant myocarditis and kidney injury. An important question is if it may also damage hematopoietic stem progenitor cells?


Subject(s)
Coronavirus Infections/epidemiology , Cytokine Release Syndrome/epidemiology , Hematopoietic Stem Cells/virology , Inflammasomes/immunology , Pandemics , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/immunology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Furans/pharmacology , Gene Expression Regulation , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Heterocyclic Compounds, 4 or More Rings , Humans , Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Indenes , Inflammasomes/antagonists & inhibitors , Inflammasomes/genetics , Myocarditis/epidemiology , Myocarditis/immunology , Myocarditis/prevention & control , Myocarditis/virology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pyroptosis/drug effects , Pyroptosis/genetics , Pyroptosis/immunology , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL